Near Earth Asteroid Rendezvous

First Launch of Discovery Program

Andrew Cheng (NEAR Project Scientist)

Johns Hopkins University
Applied Physics Laboratory

Near Earth Asteroid Rendezvous

Feb 12 2000 00:45:00 Eros 1998 and 2000

NEAR

- The first asteroid mission
- The first spacecraft visit to a C-type asteroid (flyby of 253 Mathilde)
- The first asteroid rendezvous (433 Eros)
 - First orbital operations around a small, irregular body
- The first asteroid landing (433 Eros)

More "firsts"

- Programmatic and institutional firsts
 - First planetary mission at APL (also a first for NASA)
- First use of internet for internal and external project communications as well as outreach
 - A.F. Cheng blog, NEAR image of the day
- First missions with open data policy requirements and archive requirements to the Planetary Data System

"faster, cheaper, better"

 NEAR: a new way of doing business, at lower cost, with acceptable risk

	Discovery Requirement	NEAR Performance	
Development Time	<36 mo	<27 mo	Faster
Cost to Launch +30 days (FY-92 \$)	<\$150M	<\$112M	Cheaper
Spacecraft and Payload	Acceptable risk Limited scope science	Highly redundant spacecraft Comprehensive payload	Better
Launch Vehicle	Delta equivalent or smaller	Delta 7925	

Focused Mission

Near Earth Asteroid Rendezvous

Measurement Objectives

Bulk Properties

shape gravity field mass spin state density magnetic field

Surface Properties

- Elemental and mineralogical composition
- Heterogeneity of structural and compositional units
- Physical, geological and morphological characteristics

[original slide scanned from hard copy which predates Powerpoint]

Management Principles

Practices for Inexpensive, Short Development Cycle Spacecraft (a'la JHU/APL)

- Schedule from start to launch must be ≤ 36 months
- Establish small, experienced technical team with authority to do mission
- Design spacecraft and instruments to cost
- Use lead engineer method for all subsystems
- Reliability and redundancy must be designed-in (not expensive)
- Have R&QA engineer report directly to project manager
- Single agency manager to interface with contractor

Facility Instruments

Near Earth Asteroid Rendezvous

Facility Instrument Characteristics

Visible Imager

95 x 161 µr resolution

2.25° x 3° FOV

8-position filter wheel

X-ray/γ-ray Spectrometer

Al, Mg, Si, Fe, Ti, Ca

U, Th, K

NEAR IR Spectrograph

~0.8-2.7 µm spectral range spectral resolution 22/44nm

sensitivity <1 nT Magnetometer

Laser Altimeter*

range 50 km Resolution 6 m

Radio Science*

two-way Doppler to 0.1

mm/s

*engineering subsystems

[scanned original slide with ancient typos]

NEAR Implementation

- APL responsible for project management
- APL spacecraft
- APL provided facility instruments
 - NASA selected facility instrument science team
 - NASA selected a participating scientist team
- APL responsible for mission operations
- JPL responsible for navigation and DSN support

Simple Spacecraft

Three-axis stabilized

· Total weight: 805 kg

- Propellants: 320 kg

- Experiments: 60 kg

Science payload

Multispectral imager

- Near-infrared spectrometer

- X-ray spectrometer

- Gamma-ray spectrometer

- Laser altimeter

- Magnetometer

· Dual-mode propulsion system

[AV capability: 1450 m/s]

Solar array power @ 1.00 AU: 1800 watts

Two solid-state recorders: 1.7 x 10⁹ bits

Schedule set in 1992 and followed through launch

Near Earth Asteroid Rendezvous

Preliminary Schedule

EROS MISSION

CALENDAR YEAR	93		94			95	96				
	CALENDAR YEAR									1 1	
	INSTRUMENT SELECTION		Δ								
	CONCEPTUAL DESIGN REVIEW			Δ							
	PRELIMINARY DESIGN REVIEW				Δ						
	CRITICAL DESIGN REVIEW					Δ					1
	MISSION READINESS REVIEW								Δ		
	INSTRUMENT/ S/C INTERFACES			ZZ							
	PRELIMINARY LAYOUTS			ZZ	77777						
	DETAIL DESIGN				7777	////					1
	FABRICATION					77	7777				
	SUBSYSTEM TEST						Z	777			
	SPACECRAFT LEVEL TEST							77	 		
	LAUNCH								ΔFE	В	
		1							1		- 1

How it was done

Near Earth Asteroid Rendezvous

Technical Approach

- Approach suited to Discovery Mission
 - Optimized to schedule
 - Consistent with program cost, propellant mass fraction
- Design to schedule approach
 - Modularity in propulsion system
 - Distributed architecture
 - Large (50%) use of off-the-shelf components
 - 1533 data bus
 - Qualification of subsystems prior to spacecraft delivery

Mission Milestones

- Launch (February 17, 1996)
- Mathilde Encounter (June 27, 1997)
- Earth Flyby (January 23, 1998)
- Eros Flyby (December 23, 1998)
- Eros orbit insertion (February 14, 2000)
- Eros landing (February 12, 2001)
- Landed science operations through end of mission (February 28, 2001)

One very bad day

Aborted Rendezvous Burn December 20, 1998

- On board autonomy system shut down main engine at onset
 - Accelerometer normal to thrust vector
- Spacecraft went into "Safe Mode" as planned
- Spacecraft tumbled
 - Expended 28 Kg. of fuel; not as planned and still unexplained
- Spacecraft went deeper to "Sun Safe Mode" as solar arrays exceeded angle to sun
- Recovered spacecraft 27 hours later, as planned
- Eros flyby on December 23,1998
- Successful main engine burn on January 3, 1999
- Rendezvous with Eros delayed until February 2000

Mission Operations learned in flight

- Concept of operations developed after launch for a small team
 - There was no good model for NEAR (the last orbital mission was Galileo)
- Little or no simulation of orbital operations
 - No previous orbital mission around an irregularly shaped, small object
 - Navigational accuracy could not be predicted
 - Spacecraft predicted to safe often (which did NOT happen)
- Eros flyby was in some sense a blessing

Mission Success

Near Earth Asteroid Rendezvous

- Feb 2001 mission completed with landing on 433 Eros
 - All data in PDS, September 2001
- Science Objectives fulfilled
- Mission Extras
 - Mathilde fly-by
 - Two low altitude passes of Eros surface (< 5km)
 - Landing
- Final Cost within 3% of total mission cost given to NASA in 1994
 - Includes thirteen month delay due to burn anomaly, December 1998

The First Asteroid Landing

- Spacecraft not designed for landing
- Touchdown at ~1.6 m/s, 316 million km from Earth
- Spacecraft
 acquired
 scientific data
 for two weeks
 after landing

Science Success

- All science objectives met or exceeded
- More science and data returned than originally planned
 - More than 10x number of images
 - Two low altitude flybys (under 5 km)
 - Landing and science operations on the surface
- No major spacecraft anomalies at Eros

Geologically Active Surfaces

Lobate, downslope-oriented bright streaks at 2.5 m/px in crater Selene 19

